Italian English French German Portuguese Russian Spanish

La formula del latte è Vacca2O

Di più
09/08/2017 22:27 #10324 da gnaffetto
gnaffetto RE: La formula del latte è Vacca2O
la moltiplicazione si intende quante volte si deve contare (sommare) lo stesso numero. se per 0 intendiamo che non dobbiamo nemmeno iniziare a contare allora è ininfluente il numero. :-) semplice?

Di più
10/08/2017 15:57 #10333 da FranZeta
FranZeta RE: La formula del latte è Vacca2O

gnaffetto ha scritto: :-) semplice?

Pure troppo...
Una delle conseguenze della proprietà distributiva è che se n è un numero naturale allora:

a*n=a*(1+1+...+1)=a+a+...+a

e la moltiplicazione è il numero "a" sommato a sè stesso n volte. Ma se n è un qualunque numero intero la cosa potrebbe già essere problematica: come facciamo con i numeri negativi? Cosa significa sommare (o contare) lo stesso numero -3 volte?
Espressioni come a*π porterebbero a problemi ancora maggiori, per non parlare di quelle del tipo a*ω con ω numero infinito nel senso specificato nel post precedente, perchè per quante "a" metti non riuscirai mai a ottenere:

a*ω=a+a+...+a

Oppure ancora le matrici: le matrici nxn formano anch'esse un anello, ma il prodotto A*B non è affatto definibile in termini di somme A+A+...+A o B+B+....+B (se A=(aij) e B=(bij) il prodotto è (A*B)ijkaikbkj).

Viceversa se chiediamo che la moltiplicazione sia distributiva quella che otteniamo è la normale moltiplicazione intesa come n addizioni successive dello stesso numero, nei casi in cui ciò ha senso.

Di più
12/08/2017 19:13 #10378 da kamiokande
kamiokande RE: La formula del latte è Vacca2O
Perdonami se ti rubo ancora spazio facendo un'ultima considerazione, ma visto che mi chiami ancora in causa ...

[Nota per kamiokande: ciò dimostra nella fattispecie che le equazioni non sono affatto indeterminate, che l'unica cosa ad essere indeterminata è la funzione γ(v) (non il suo limite!!!), e che ciò comporta che il valore v=c non corrisponde a nessuna trasformazione di Lorentz, quindi per confutare la Lorentz-invarianza delle equazioni di Maxwell hai scelto proprio l'unico valore esplicitamente escluso dal discorso.]

Sul fatto che per Einstein v=c sia escluso dal discorso, come dici tu, ci sarebbe da aprire un'altra discussione, ma non importa. Hai ragione ho scritto una sciocchezza, le trasformazioni di Lorentz non valgono per v=c e le equazioni non diventano indeterminate. Si può comunque osservare che, se per esempio, viene condotto un esperimento per verificare la legge di Faraday in cui un osservatore solidale ad un conduttore misura una corrente di 0.5A ed al contempo un osservatore in moto rispetto al conduttore, per via della dipendenza da gamma e quindi dalla velocità di trascinamento, arriva a misurare 5A (o un qualunque valore tendente all'infinito, se gamma tende all'infinito), ciò non rappresenta un problema perché la legge di Faraday vale per entrambi allo stesso modo; ma questo equivale ad affermare che la seconda legge di Newton è invariante rispetto ad un osservatore non inerziale, perché anche se i due osservatori misurano forze diverse, sommando l'accelerazione cosiddetta apparente a quella inerziale, la legge di Newton si presenta identica per i due sistemi. In più, se poniamo per esempio che il conduttore possa sostenere al massimo 1A, nel tentativo di capire come mai il conduttore non fonda per i 5A osservati (o un qualunque valore tendente all'infinito) il secondo osservatore è in grado di capire che in realtà è lui che si muove rispetto al conduttore e non viceversa, violando così il primo principio di relatività.

Mi fermo definitivamente qui, anche perché rileggendo alcuni passaggi della nostra discussione mi sono reso conto che si sono toccate vette di incredibile surrealismo, culminato con questo passaggio che merita, a parer mio, una sottolineatura: io ho scritto che secondo Jefimenko il problema della forma relativistica delle equazioni di Maxwell è che la trasformazione della carica comunemente usata è questa



ma quella corretta dovrebbe essere questa



(Nota 1, gamma è presente in tutte e due le espressioni, quindi non è gamma il punto, non lo è mai stato)
(Nota 2, la trasformazione della densità di carica inserita nella prima equazione di Maxwell appare appunto nella forma non trasformata quindi gamma ancora una volta non centra).
E tu mi hai risposto che Jefimenko si è sbagliato perché non si è accorto che la carica si trasforma anche per Lorentz in questo modo



ovvero la formula comunemente usata e che Jefimenko sostiene (a mio modesto avviso giustamente) essere proprio la forma sbagliata, perché rho è considerata sempre in quiete rispetto a S (gamma è legato al moto di S' non della carica).
Incomprensione per altro non isolata, evidenziando che non ci siamo capiti per tutto lo scambio, e che quindi abbiamo solo perso tempo oltre che rubare spazio a questo tuo thread. Ti auguro un buon proseguimento.

"La stampa è morta" (Egon Spengler - Ghostbuster)

Di più
12/08/2017 22:51 #10381 da FranZeta
FranZeta RE: La formula del latte è Vacca2O

kamiokande ha scritto: Perdonami se ti rubo ancora spazio facendo un'ultima considerazione, ma visto che mi chiami ancora in causa ...

Come tu sai benissimo, perchè ne abbiamo parlato in PM, lo spazio in questo thread non era dedicato a una critica della teoria della relatività, argomento di per sè interessante su cui potresti aprire un apposito forum, ma a un argomento molto più specifico. In un'altra discussione ho affermato che le equazioni di Maxwell sono invarianti per trasformazioni di Lorentz, cosa che mi hai contestato sulla base di tutta una serie di considerazioni che con la matematica non hanno niente a che fare. Quindi il proposito era di trasferire qui la discussione specifica *matematica* dell'invarianza, non tutti gli altri argomenti che di messaggio in messaggio hai tirato fuori.

Ora, le equazioni di Maxwell (quelle classiche, non le varianti che di volta in volta hai estratto dal cilindro) riguardano due campi vettoriali* che potrebbero essere puramente immaginari, senza alcun corrispettivo nel mondo fisico reale, e ciò nonostante continuerebbero ad essere invarianti per trasformazioni di Lorentz. Ecco perchè tutto il resto del discorso non mi interessa in questa sede. Detto tra noi, le questioni che sollevi sarebbero ben al di là della capacità di comprensione di sottigliezze astratte che mi hai dimostrato sin ora, tanto per intenderci: la relatività richiede di abbandonare il quadro classico di spazio tridimensionale euclideo più il tempo considerato come parametro a parte, come spiegò molto meglio di come potrei fare io lo stesso Minkowski:

« Le concezioni di spazio e di tempo che desidero esporvi sono sorte dal terreno della fisica sperimentale, e in ciò sta la loro forza. Esse sono fondamentali. D'ora in poi lo spazio di per sé stesso o il tempo di per sé stesso sono condannati a svanire in mere ombre, e solo una specie di unione tra i due concetti conserverà una realtà indipendente. »

Ovvio che se ci mettiamo per partito preso nella realtà euclidea classica troveremo mille incongruenze: siamo nella stessa situazione di chi si trovò a negare nell'ottocento la validità del teorema di Pitagora, e da ciò seguirono le geometrie non euclidee. Ma nessuno ha mai negato la dimostrazione (ci sono sono decine e decine di dimostrazioni diverse in realtà) del teorema di Pitagora, quello che si può negare, senza cadere in contraddizione, è uno o più assiomi che si assumono per tale dimostrazione, nella fattispecie quello delle parallele. Quindi il discorso che vorresti fare tu si rivelerebbe di una intricatezza concettuale che nemmeno te la immagini. Giusto per capirci: le vere "equazioni di Maxwell relativistiche" non sarebbero certo quelle che dici tu, bensì quelle che coinvolgono il tensore elettromagnetico.

Ma se tu mi dici: le equazioni di Maxwell non sono invarianti a causa del fattore gamma che compare in questa equazione:

io ti faccio il calcolo e ti dimostro una cosa semplicissima che non hai ancora assimilato: se neghi l'esistenza di quella che ho chiamato in precedenza "equivalenza 1" la tua equazione è sbagliata, dato che svolgendo il calcolo il fattore gamma non compare in corrispondenza delle equazioni accentate, ma di quelle non accentate, che valgono per ipotesi (l'ipotesi è che le equazioni di Maxwell valgano in almeno un sistema di riferimento S). Ti dico anche di più: so benissimo, anche se non hai postato nessun calcolo, che questa tua fatidica espressione nasce da un semplice scambio di ruolo fra i due sistemi di riferimento S e S', dal mio punto di vista di matematico è un semplice cambio di notazione, scambiamo tutto ciò che era accentato con tutto ciò che non lo era. Ma questo per te invece è un problema esistenziale, perchè non puoi ammettere che i due sistemi siano in qualche modo equivalenti, altrimenti staresti accettando la relatività ristretta.

In definitiva se vuoi essere coerente con le tue stesse idee devi ammettere che la tua equazione qui sopra è semplicemente sbagliata, cosa che invece non ti ho mai contestato perchè dal mio punto di vista sarebbe una bestemmia matematica, dato che accetto tanto l'equivalenza 1 quanto la relatività. Ragion per cui tutto il tuo discorso, o di Jefimenko non ho capito bene, per quel che mi riguarda non ha alcun senso: se la carica è fissa rispetto a S non lo è di sicuro rispetto a S', ma io accetto come realtà matematica l'equivalenza dei due sistemi, tutto il resto è un discorso epistemologico che investe i postulati, non i risultati.

* Due campi perchè per quanto riguarda il nostro discorso vanno benissimo le equazioni in assenza di materia, con solo i campi E e B per intenderci.

Di più
12/08/2017 23:40 #10382 da Pavillion
Pavillion RE: La formula del latte è Vacca2O
Se non fosse stato per kamiokande, non so in quale altro modo mi sarebbe stato possibile entrare nel giro Minkowski:
« Le concezioni di spazio e di tempo che desidero esporvi sono sorte dal terreno della fisica sperimentale, e in ciò sta la loro forza. Esse sono fondamentali. D'ora in poi lo spazio di per sé stesso o il tempo di per sé stesso sono condannati a svanire in mere ombre, e solo una specie di unione tra i due concetti conserverà una realtà indipendente. »

Grazie Franzeta.

Di più
14/08/2017 00:32 #10413 da FranZeta
FranZeta RE: La formula del latte è Vacca2O

Pavillion ha scritto: Se non fosse stato per kamiokande, non so in quale altro modo mi sarebbe stato possibile entrare nel giro Minkowski

In effetti oltre alla profondità dei contributi scientifici, a Minkowski bisogna riconoscere una qualità della prosa fuori del comune, almeno per uno scienziato. Purtroppo è morto poco dopo aver scritto il saggio da cui è tratta la citazione.

Di più
14/08/2017 04:48 #10414 da doktorenko
doktorenko RE: La formula del latte è Vacca2O
Mi permetto di riportare la citazione nell`originale tedesco, con una mia traduzione:

"Die Anschauungen über Raum und Zeit, die ich Ihnen entwickeln möchte, sind auf experimentell-physikalischem Boden erwachsen. Darin liegt ihre Stärke. Ihre Tendenz ist eine radikale. Von Stund′ an sollen Raum für sich und Zeit für sich völlig zu Schatten herabsinken und nur noch eine Art Union der beiden soll Selbständigkeit bewahren."

"Le visioni di spazio e tempo che di seguito vorrei esporre sono portate a compimento partendo da una base empirico-fisica: la loro forza sta proprio in questo. L`esito e` drastico: d`ora in poi dovra` sprofondare completamente nell`oscurita` lo spazio di-per-se` e il tempo di-per-se`; unicamente una speciale unione tra i due dovra` mantenere autosussistenza."

Aggiungo un giudizio di E. su M.:

"Das Studium von Minkowski wuerde Dir nichts helfen. Seine Arbeiten sind unnuetz kompliziert."
"[Caro Besso], lo studio [delle opere originali] di M. non ti sarebbe di nessun aiuto: i suoi lavori sono inutilmente complicati."

Di più
14/08/2017 14:10 - 14/08/2017 15:00 #10422 da Pavillion
Pavillion RE: La formula del latte è Vacca2O
Franzeta e dopo i... Pavillion: Purtroppo è morto poco dopo aver scritto il saggio da cui è tratta la citazione... già... è stato bastante a rendermelo vivo ,ma, non solo questo. Acquisterò quel saggio.
Ultima modifica: 14/08/2017 15:00 da Pavillion. Motivo: Saggio

Di più
14/08/2017 15:10 #10424 da FranZeta
FranZeta RE: La formula del latte è Vacca2O

doktorenko ha scritto: Mi permetto di riportare la citazione nell`originale tedesco, con una mia traduzione...

Grazie per l'apporto, in effetti mi è sempre dispiaciuto non poter leggere gli originali in tedesco. Per esempio possiedo l'opera omnia di Riemann...in francese!

Aggiungo un giudizio di E. su M.:

"Das Studium von Minkowski wuerde Dir nichts helfen. Seine Arbeiten sind unnuetz kompliziert."
"[Caro Besso], lo studio [delle opere originali] di M. non ti sarebbe di nessun aiuto: i suoi lavori sono inutilmente complicati."


Non è chiaro a quali opere si riferisca, Minkowski ha dato anche importanti contributi nel campo della matematica pura, non credo che possa riferirsi al suo lavoro sulla relatività per il semplice motivo che non è per nulla complicato, anzi, è alla portata di chiunque abbia fatto le scuole superiori, saltando qualche formula magari. Inoltre la teoria di Minkowski risulta essere un caso particolare, e molto semplice, della relatività generale di Einstein, come dire: se avesse giudicato inutilmente complicata l'opera di Minkowski avrebbe dovuto avere un'idea molto peggiore della propria.

Pare d'altronde che Minkowski, che era stato insegnante di Einstein al Politecnico di Zurigo, una volta letto il suo famoso articolo del 1905 abbia detto:
"Non mi sarei mai aspettato una roba del genere da quello là..."

Di più
14/09/2017 16:40 #10628 da FranZeta
FranZeta RE: La formula del latte è Vacca2O
La formula magica

Qualche commento addietro ho citato, anche forse un po' a sproposito, una certa formula magica. La definizione non è affatto mia, la prima volta che la incontrai fu al primo anno di università, negli appunti del prof. Philippe Ellia di Geometria I (testo vivamente sconsigliato a chi non voglia sostenere il relativo esame, che tra l'altro non esiste più essendo sopravvenuta la riforma universitaria), per la precisione a pagina 282, che rileggo con una punta di commozione a causa di un commento a matita lasciato da mio nonno, che non frequenta questo mondo ormai da molti anni...
...ma bando ai sentimentalismi, ecco il freddo estratto della dispensa universitaria:

Osservare la formula "magica" che collega i quattro numeri e, i, π e 1:

e=-1


Ora, volendo proprio essere pignoli, ai quattro numeri appena citati se ne potrebbe aggiungere un altro, per nulla ininfluente, riscrivendo la formula come segue:

e+1=0 ...................... (formula magica)

ed è proprio quest'ultima la forma che preferisco, e alla quale mi riferirò d'ora innanzi come *formula magica*. Cos'ha di magico? Beh, se non è ancora chiaro, lega in modo sorprendente i cinque numeri più importanti della matematica: che 0 e 1 siano piuttosto fondamentali credo non necessiti di ulteriori spiegazioni, π dovremmo sapere tutti che numero sia e come rappresenti una sorta di collegamento tra ciò che è retto e ciò che è curvo, o per essere più precisi come sia la soluzione della famosa "quadratura del cerchio". Nel commento già citato avevo introdotto il numero immaginario "i", ossia la radice quadrata di -1, e avevo accennato a come a partire da questo numero si definiscano i numeri complessi aventi forma z=x+iy, e in effetti la formula magica ha senso proprio nel campo dei numeri complessi. Resta da definire il numero "e", detto anche costante di Nepero. Iniziamo a vedere quali sono le prime cifre del suo sviluppo decimale:

e=2,718281828459...

Questo è uno di quei casi (si veda il primo post di questo thread) in cui i tre puntini sono fondamentali, dato che le cifre proseguono all'infinito senza alcuna periodicità. Inoltre, proprio come π, si tratta di un numero trascendente, cioè non è esprimibile usando radici, come invece è possibile per altri numeri il cui sviluppo decimale sia infinito non periodico (per esempio radice di 2, o la sezione aurea Φ). Per vedere da dove saltino fuori queste cifre bisogna prima introdurre un semplice concetto: quello di fattoriale. Dato un numero naturale n, il fattoriale di n, indicato con "n!", è il prodotto di tutti i numeri naturali da 1 a n:

n!=1*2*3*...*(n-1)*n

Se n=0 si pone per definizione 0!=1 (!!! Il perchè di questa "strana" convenzione sarà chiarito presto). Il fattoriale di n ha una interpretazione pratica immediata: è il numero di tutte le permutazioni di n oggetti, per esempio con tre oggetti abbiamo le sei permutazioni:

123 132 213 231 312 321

e in effetti 3!=1*2*3=6. Ora che abbiamo a disposizione il concetto di fattoriale ecco come si definisce il numero "e":

e=ΣN 1/n!

dove ΣN indica la sommatoria da 0 a ∞ (cioè sull'insieme dei numeri naturali N), quindi scrivendo per esteso alcuni termini:

e=1+1+1/2+1/6+1/24+1/120+...

ed ecco quindi perchè si pone 0!=1, che è il primo termine della sommatoria.

Il numero "e" è di importanza capitale in molti ambiti matematici, non solo perchè è la base della funzione esponenziale e della sua inversa, il logaritmo naturale , ma anche per tutta una serie di proprietà che non possiamo trattare qui. Così come d'altronde gli altri quattro numeri della formula magica, la quale in sostanza ci dice che se eleviamo "e" alla "iπ" e aggiungiamo 1 otteniamo 0...voglio dire, se non è magia questa...

...pensiamo solo al fatto dell'elevamento a potenza: elevare un numero alla "n" significa moltiplicare quel numero per sè stesso n volte, ma se n non è un numero naturale come si fa? Se n è un numero intero negativo ce la caviamo abbastanza facilmente: a-n=1/an, riusciamo a svangarla anche se l'esponente è un numero razionale m/n: am/n è uguale alla radice n-esima di am, ma se l'esponente è un qualunque numero reale non possiamo più inventarci escamotage. E infatti nel caso generale si usa appunto la funzione esponenziale, dalla quale tra l'altro derivano le proprietà che permettono le generalizzazioni ad esponenti razionali appena descritte. Ma nella formula magica compare anche la fatidica "i", quindi l'elevamento a potenza riguarda un esponente immaginario!!!

Come accidenti si fa? Nel solito modo! Generalizzando in modo naturale una regola già nota in un caso particolare. Nel nostro caso partiamo dalla definizione di funzione esponenziale:

exN xn/n!

(si noti come per x=1 si ottenga la definizione del numero "e" data sopra, cioè e1=e, cosa buona e giusta)
Ora se vogliamo dare un senso agli esponenti immaginari prendiamo la formula sopra e al posto del generico numero reale x ci mettiamo dentro il generico numero complesso z=x+iy:

ezN zn/n!

Cala il silenzio e inizia a sentirsi il ronzio di un tarlo nella testa di chi sta leggendo, lo so, e pian piano si fa chiara l'esclamazione...

...ma che cagata!!!

Questo momento è ormai un classico del thread, non riuscirei più a rinunciarci. Sì, è vero, sembra una cagata, ma in realtà è un salto concettuale di una profondità tale che solo la messe pressochè infinita di risultati utili e sorprendenti che comporta ha fatto sì che sia accettato da tutti senza compromessi. Ecco ad esempio come sono legate le funzioni trigonometriche con l'esponenziale, se accettiamo il balzo di cui sopra:

eiz=cos z + i sin z

Non esiste nulla di vagamente simile nel campo dei numeri reali, relazioni di questo tipo si esplicano solo tuffandosi nei numeri complessi. Facendo un balzo all'indietro rispetto al precedente possiamo riscrivere la relazione qui sopra nel caso particolare in cui z=x (cioè y=0 e z diventa un numero reale):

eix=cos x + i sin x ...........................(formula magica generalizzata)

e a questo punto basta prendere il valore particolare x=π per ottenere la nostra formula magica, dato che cos π=-1 e sin π=0. Se ci fossero ancora dubbi che trattasi di vera magia, ecco al volo un altro colpo di bacchetta: poniamo x=α+β e sostituiamolo nella formula sopra:

ei(α+β)=cos (α+β) + i sin (α+β)

ora usando le proprietà della funzione esponenziale quest'ultima è equivalente a:

ee=cos (α+β) + i sin (α+β)

a sua volta equivalente, sfruttando la formula magica generalizzata relativa a e ed e, a:

(cos α + i sin α)(cos β + i sin β)=cos (α+β) + i sin (α+β)

svolgendo il prodotto delle parentesi:

(cos α)(cos β)-(sin α)(sin β)+i(cos α)(sin β)+i(sin α)(cos β)=cos (α+β) + i sin (α+β)

e infine, uguagliando i termini senza "i" a sinistra e destra dell'uguale, e facendo lo stesso con quelli con la "i", otteniamo le due formule:

cos (α+β)=(cos α)(cos β)-(sin α)(sin β)
sin (α+β)=(cos α)(sin β)+(sin α)(cos β)

che chi ha studiato trigonometria alle superiori è stato costretto ad imparare a memoria, eventualmente insieme ad una noiosa dimostrazione geometrica. Noi invece abbiamo usato solo una proprietà della funzione esponenziale e un po' di algebra spicciola. E la formula magica, of course.

Di più
14/09/2017 17:57 #10629 da Pavillion
Pavillion RE: La formula del latte è Vacca2O
Si dovrebbe pure ammettere che quando Costanza è costante ... vi deve essere qualcosa di diabolico in lei.
Trovo che i tuoi numeri siano come le note poste sulla scala di violino, da l'idea di chissà che rivolgendosi al sottostante pentagramma, non lo capirò mai fin quando non lo si inizi a suonarlo, così armato di santa attitudine ti attendo, so che lo suonerai.

Ho copiato le tue "trascendenti" reminescenze, non capirò i numeri, non li capirò mai fin quando non li si inizi a leggerli nelle note che essi lasciano.

Di più
15/09/2017 18:45 #10635 da FranZeta
FranZeta RE: La formula del latte è Vacca2O

Pavillion ha scritto: non lo capirò mai fin quando non lo si inizi a suonarlo, così armato di santa attitudine ti attendo, so che lo suonerai.

Eh beh l'attitudine aiuta, ma scrivere di proprio pugno qualche passaggio aiuta ancora di più. Se sei interessato all'argomento ti consiglierei per esempio di rifare per conto tuo l'ultimo calcolo che ho postato, magari sbirciando ogni tanto se necessario. Buona comunque la metafora musicale, io ne aggiungerei una culinaria: un conto è imparare le ricette a memoria, altro conto è mettersi ai fornelli e realizzarle, magari non proprio perfettamente, però insomma, ci si prova.

Di più
16/09/2017 00:01 #10637 da Pavillion
Pavillion RE: La formula del latte è Vacca2O
Penso di aver già fornito la spiegazione. Il matematico sei tu, i tuoi "pensieri in libertà" la insegnano, ti ringrazio di questo. Lo si può notare dall'aver utilizzato, come citazione, la chiave di violino e non la magica formula dei numeri.

Di più
22/09/2017 18:06 #10658 da FranZeta
FranZeta RE: La formula del latte è Vacca2O
Ancora un altro infinito: ai confini del piano e oltre

Si è già parlato, nel post infiniti infiniti , del concetto di infinito in relazione ai numeri, o più precisamente rispetto alla cardinalità degli insiemi. Già in quella circostanza abbiamo constatato come ammettere che esista almeno un insieme infinito comporta che esista un'infinità di insiemi infiniti, ciascuno "più grande" dell'altro. Lungi dall'aver esaurito le declinazioni matematiche del termine "infinito" ecco che ne propongo un'altra, questa volta di natura geometrica. Ci avvieremo verso l'infinito non più spingendoci alla ricerca di numeri esageratamente grandi, ma muovendoci verso i confini del piano cartesiano, o euclideo, che però se permettete da matematico preferisco chiamare R2.

Ora, che il piano euclideo non abbia limiti è cosa piuttosto nota, nessuno ci vieta di prolungare una retta fin dove vogliamo, tanto per dirne una, ma una delle conseguenze sorprendenti della nostra precedente incursione nell'infinito è che l'intera retta dei numeri reali contiene tanti punti quanti un qualunque intervallo aperto di numeri su di essa. Esprimendo la cosa nei termini più corretti la retta può essere messa in relazione biunivoca con un suo intervallo finito. Non solo, e questo non ve l'avevo ancora detto, fra le tante relazioni biunivoche che potremmo trovare ce ne sono anche alcune continue, cosa che in ambito geometrico ha conseguenze rilevanti: in sostanza ci permette di dire che un intervallo limitato, per esempio (-1,1), può essere considerato come un modello geometrico fedele dell'intera retta. Motivare tecnicamente questa affermazione richiederebbe un'introduzione alla topologia che in questa sede non ha molto senso, quindi prendetela per buona così come è.

Se l'intervallo (-1,1) può essere preso a modello della retta, allora il quadrato (-1,1)x(-1,1) si presta a modello dell'intero piano cartesiano ("x" indica qui il prodotto cartesiano, si tratta in questo caso del quadrato avente vertici nei quattro punti (±1,±1)). Quindi "l'infinità" del piano R2 sta tutta in una scatola quadrata di lato 2!!! La cosa, a prima vista sorprendente, giustifica il fatto che nelle questioni geometriche più che alla contrapposizione finito/infinito ci si riferisca a quella, più tecnica, di compatto /non compatto, anche se una volta chiarito il contesto i termini possono essere considerati pressochè sinonimi. Comunque torniamo alla nostra scatola quadrata che contiene l'intero piano, cosa possiamo dire dei suoi confini?

Che non ci sono!

Fate attenzione, usare le parentesi tonde per gli intervalli significa che stiamo escludendo gli estremi (per includerli si usano le parentesi quadre), quindi il nostro quadrato è privo del bordo. La cosa è fondamentale perchè attaccandogli il bordo non avremmo più un modello di R2, in particolare avremmo uno spazio compatto (= finito). Altro paradosso: uno spazio "più piccolo" -il quadrato senza bordo- è equivalente a uno spazio infinito, mentre aggiungendogli il bordo otteniamo uno spazio inevitabilmente finito! Capisco che messa giù così la questione può sembrare logicamente consistente come la trama di Alice nel paese delle meraviglie, però di fronte a delle conseguenze concrete forse cambierete idea.

Torniamo un momento al nostro piano cartesiano. Si sa che un'equazione nelle variabili x e y rappresenta un luogo geometrico (eventualmente vuoto) nel piano: per esempio y=0 e x=0 sono le equazioni che definiscono rispettivamente l'asse x e l'asse y, oppure x2+y2=1 è la circonferenza unitaria centrata nell'origine. O ancora la seguente equazione:

y2=x3+ax+b

rappresenta una generica curva ellittica . Adesso serve un trucchetto algebrico. L'equazione sopra è di terzo grado non omogenea, cioè c'è un temine di terzo grado e altri di grado inferiore, trasformiamola in un'equazione omogenea nel modo seguente: innanzitutto riscriviamo le vecchie incognite x e y in maiuscolo, per non confonderci in seguito, e poi moltiplichiamo tutti i termini che non hanno grado 3 per la nuova incognita T elevata all'esponente opportuno in modo che tutti i termini risultino di grado 3, si fa prima a fare che a spiegare:

Y2T=X3+aXT2+bT3

ecco, questa è la nuova equazione, l'operazione di riscrittura appena fatta prende il nome di omogeneizzazione e la sua utilità sarà chiara fra breve. Si noti subito che, se poniamo T ǂ 0, le vecchie incognite sono legate alle nuove dalle semplici relazioni:

x=X/T
y=Y/T

e come appare chiaro più T diventa piccolo più x e y diventano grandi. E quando T=0? Beh, x e y diventano infinite! Il trucchetto dell'omogeneizzazione serve a catturare il comportamento all'infinito dei luoghi geometrici del piano euclideo. Finchè T è diverso da zero possiamo ricondurci alle equazioni classiche in virtù delle relazioni sopra, quando T=0 basta sostituire nell'equazione omogenea e vedere cosa succede, nel nostro caso si ottiene:

Y2*0=X3+aX*02+b*03

---> X3=0
---> X=0

che ci dice che la curva ellittica interseca l'infinito in un punto di ascissa zero. Tutto ciò trova una interpretazione rigorosa all'interno dello spazio geometrico noto come piano proiettivo , che consiste in un normale piano euclideo al quale abbiamo aggiunto una circonferenza di raggio infinito, i cosiddetti "punti all'infinito". Per dirla tutta questa circonferenza non è proprio canonica, al di là del raggio infinito ha anche l'ulteriore proprietà che due punti antipodali sono da considerarsi lo stesso punto, e in effetti è topologicamente uguale a una circonferenza ma geometricamente bisogna parlare di retta proiettiva. In ogni caso, usando le nostre coordinate omogenee X, Y e T, l'equazione di tale retta, cioè "l'equazione dell'infinito", è semplicemente T=0, nè più e nè meno come le equazioni degli assi cartesiani classici visti sopra.

Solo un piccolo appunto sul funzionamento delle coordinate omogenee e poi passiamo alla parte magica, che non manca certo. A differenza delle coordinate cartesiane (x,y) le coordinate omogenee non sono univocamente determinate, ma la terna (X,Y,T) può essere moltiplicata per un qualunque fattore diverso da zero e continuerà comunque a indicare lo stesso punto del piano proiettivo, si usa quindi una notazione diversa per indicarla e al posto della virgola si mettono i due punti: (X:Y:T) (esistono anche altre notazioni equivalenti). Inoltre (0:0:0) non rappresenta alcun punto del piano proiettivo. Per esempio (1:2:3) e (π:2π:3π) sono le coordinate dello stesso punto, mentre i punti all'infinito hanno coordinate (X:Y:0) senza però che X e Y possano essere contemporaneamente zero. Nel caso di prima avevamo trovato che l'intersezione fra la curva ellittica e la retta all'infinito aveva ascissa zero, cioè era del tipo (0:Y:0) con Y indeterminato (ma necessariamente diverso da zero), ma dato che moltiplicando le coordinate omogenee per un fattore diverso da zero otteniamo sempre lo stesso punto, possiamo scrivere (0:Y:0)=Y*(0:1:0)=(0:1:0) e l'ultima uguaglianza ci dà le esatte coordinate dell'intersezione fra la curva e l'infinito. E scusate se è poco!

Veniamo dunque ad una applicazione pratica di tanta teoria: le coniche. Le coniche sono la circonferenza, caso particolare delle ellissi, le iperboli e le parabole. Ci sono poi le coniche degeneri, ossia le coppie di rette e le "rette doppie" (sono le normali rette la cui equazione è stata elevata al quadrato, per esempio y2=0 nel caso dell'asse delle x). In generale una conica è il luogo geometrico di un'equazione di secondo grado nelle incognite x e y. Chi ha fatto geometria analitica alle superiori forse se le ricorderà, magari non proprio con piacere, per via dell'armamentario di formule ad esse legate. Bene, nel piano proiettivo esistono solo due tipi di coniche: le coniche degeneri e quelle non degeneri, e la cosa è una semplificazione non da poco. Sto dicendovi che ellissi, iperboli e parabole sono la stessa cosa, e possono essere tutte ricondotte alla circonferenza unitaria x2+y2=1.

Ecco come si fa. Bisogna solo tenere a mente che, così come nel piano cartesiano nessuno ci vieta di utilizzare nuove incognite x',y' che siano legate a quelle vecchie da opportune trasformazioni, lo stesso vale nel proiettivo. A seconda dell'ambito possono essere usate trasformazioni differenti come le traslazioni, le rotazioni, le isometrie (= traslazioni+rotazioni+riflessioni) eccetera, nel caso più generale si parla di trasformazioni affini per lo spazio euclideo e trasformazioni proiettive nello spazio proiettivo. Queste ultime ci consentono di trasformare qualunque retta nella retta speciale che rappresenta l'infinito del piano cartesiano, dato che effettivamente questa retta è speciale solo in ambito euclideo, mentre in quello proiettivo di speciale non ha nulla (così come le incognite x e y sono sostanzialmente interscambiabili, lo stesso vale per X, Y e T). Partiamo dunque da una rappresentazione della circonferenza unitaria e della retta all'infinito T=0:



Questa situazione è sostanzialmente la stessa sia che la vediamo nel piano euclideo, sia nel proiettivo, l'unica discriminante è che la retta all'infinito sarebbe fuori dalla nostra visuale nel piano cartesiano.
Se ora spostiamo la retta all'infinito fino a farla coincidere con la retta y=1 (Y=T in coordinate omogenee) otteniamo, nel piano proiettivo, questo:



che corrisponde nel piano cartesiano a questa curva:



...una parabola!

Spostiamo ancora la retta all'infinito e facciamola coincidere con l'asse delle x:



la corrispondente situazione in R2 è questa:



...toh, un'iperbole!

Ovviamente mi sono guardato bene dal riportare i passaggi algebrici che giustificano le figure qui sopra, ma intuitivamente il concetto è molto semplice: la linea rossa è l'infinito e la blu la curva, ogni punto di contatto fra le due rappresenta nient'altro che un punto all'infinito della conica. Come promesso siamo giunti a toccare l'infinito (geometrico) e siamo andati pure oltre!

Tempo creazione pagina: 0.313 secondi

Per migliorare il nostro servizio, la tua esperienza di navigazione e la fruizione pubblicitaria questo sito web utilizza i cookie (proprietari e di terze parti). Per maggiori informazioni (ad esempio su come disabilitarli) leggi la nostra Cookies Policy. Chiudendo questo banner, scorrendo questa pagina o cliccando qualunque suo elemento acconsenti all'uso dei cookie. INFO